代码:DeepResearch
主要看一下inference下面的ReAct推理流程。
inference
├── eval_data
│ ├── example_with_file.jsonl
│ ├── example.jsonl
│ └── file_corpus
│ └── hello.txt
├── file_tools
│ ├── __pycache__
│ │ └── file_parser.cpython-313.pyc
│ ├── file_parser.py
│ ├── idp.py
│ ├── utils.py
│ ├── video_agent.py
│ └── video_analysis.py
├── prompt.py
├── react_agent.py
├── run_multi_react.py
├── run_react_infer.sh
├── tool_file.py
├── tool_python.py
├── tool_scholar.py
├── tool_search.py
└── tool_visit.py
代码的入口是run_react_infer.sh中的run_multi_react.py文件
run_multi_react.py负责初始化节点环境,加载数据集,加载模型配置,进行多次rollout采样。
react_agent是ReAct 架构的Agent,负责迭代输出,调用工具。
from react_agent import MultiTurnReactAgent
test_agent = MultiTurnReactAgent(
llm=llm_cfg,
function_list=["search", "visit", "google_scholar", "PythonInterpreter"]
)
react_agent主体的ReAct agent,统一调度处理模型的输出,进行tool extract and execute和tool response的拼接
执行ReAct的全部流程,给出最后的执行状态,处理运行中的异常现象
定义工具
from tool_file import *
from tool_scholar import *
from tool_python import *
from tool_search import *
from tool_visit import *
OBS_START = ''
OBS_END = 'n '
# 定义工具,放在TOOL_MAP中
TOOL_CLASS = [
FileParser(),
Scholar(),
Visit(),
Search(),
PythonInterpreter(),
]
TOOL_MAP = {tool.name: tool for tool in TOOL_CLASS}
在MultiTurnReactAgent类中使用def call_server() 调用llm api
def call_server(self, msgs, planning_port, max_tries=10):
openai_api_key = "EMPTY"
openai_api_base = f"http://127.0.0.1:{planning_port}/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
timeout=600.0,
)
执行ReAct流程
可能出现的情况
)
def _run(self, data: str, model: str, **kwargs) -> List[List[Message]]:
#############################################################
# 初始化question和最多调用轮次num_llm_calls_available,
# 记录start_time,拼接最开始的message
#############################################################
self.model=model
try:
question = data['item']['question']
except:
raw_msg = data['item']['messages'][1]["content"]
question = raw_msg.split("User:")[1].strip() if "User:" in raw_msg else raw_msg
start_time = time.time()
planning_port = data['planning_port']
answer = data['item']['answer']
self.user_prompt = question
system_prompt = SYSTEM_PROMPT
cur_date = today_date()
system_prompt = system_prompt + str(cur_date)
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": question}]
num_llm_calls_available = MAX_LLM_CALL_PER_RUN
round = 0
#############################################################
# 开始迭代每一个iter,生成 或是
#############################################################
while num_llm_calls_available > 0:
# Check whether time is reached
#############################################################
# 检查是否超时(2.5小时)
#############################################################
if time.time() - start_time > 150 * 60: # 150 minutes in seconds
prediction = 'No answer found after 2h30mins'
termination = 'No answer found after 2h30mins'
result = {
"question": question,
"answer": answer,
"messages": messages,
"prediction": prediction,
"termination": termination
}
return result
#############################################################
# 更新调用llm次数 num_llm_calls_available
# 获取llm的返回值 content
#############################################################
round += 1
num_llm_calls_available -= 1
content = self.call_server(messages, planning_port)
print(f'Round {round}: {content}')
#############################################################
# 进行content中关键tool的提取
#############################################################
# 舍弃content中的部分,应为obs应该是user输入的,而不是llm生成的
if '' in content:
pos = content.find('')
content = content[:pos]
messages.append({"role": "assistant", "content": content.strip()})
# 查看content中是否有工具调用
if '' in content and ' ' in content:
tool_call = content.split('')[1].split(' ')[0]
try:
# 使用python解释器运行code_raw
if "python" in tool_call.lower():
try:
code_raw=content.split('')[1].split(' ')[0].split('')[1].split('')[0].strip()
result = TOOL_MAP['PythonInterpreter'].call(code_raw)
except:
result = "[Python Interpreter Error]: Formatting error."
# 调用其他的工具
else:
tool_call = json5.loads(tool_call)
tool_name = tool_call.get('name', '')
tool_args = tool_call.get('arguments', {})
result = self.custom_call_tool(tool_name, tool_args)
# 如果llm生成的tool formart错误,则将错误信息写入messages中(可以使用约束采样避免格式错误)
except:
result = 'Error: Tool call is not a valid JSON. Tool call must contain a valid "name" and "arguments" field.'
result = "n" + result + "n "
# print(result)
# 把tool response写入到user中
messages.append({"role": "user", "content": result})
# 如果模型生成的content中有 ,则已经输出答案
if '' in content and ' ' in content:
termination = 'answer'
break
# 如果没有可用轮次,记录失败信息
if num_llm_calls_available ' not in content:
messages[-1]['content'] = 'Sorry, the number of llm calls exceeds the limit.'
max_tokens = 110 * 1024
token_count = self.count_tokens(messages)
print(f"round: {round}, token count: {token_count}")
#############################################################
# ReAct的累积上下文token长度达到阈值,强制给出回答
#############################################################
if token_count > max_tokens:
print(f"Token quantity exceeds the limit: {token_count} > {max_tokens}")
messages[-1]['content'] = "You have now reached the maximum context length you can handle. You should stop making tool calls and, based on all the information above, think again and provide what you consider the most likely answer in the following format:your final thinking nyour answer "
content = self.call_server(messages, planning_port)
messages.append({"role": "assistant", "content": content.strip()})
# token数达到阈值后,成功返回结果
if '' in content and ' ' in content:
prediction = messages[-1]['content'].split('')[1].split(' ')[0]
termination = 'generate an answer as token limit reached'
# 未返回结果
else:
prediction = messages[-1]['content']
termination = 'format error: generate an answer as token limit reached'
result = {
"question": question,
"answer": answer,
"messages": messages,
"prediction": prediction,
"termination": termination
}
return result
# 这里termination忽略了token超限制后是否给出answer的情况
if '' in messages[-1]['content']:
prediction = messages[-1]['content'].split('')[1].split(' ')[0]
termination = 'answer'
else:
prediction = 'No answer found.'
termination = 'answer not found'
if num_llm_calls_available == 0:
termination = 'exceed available llm calls'
result = {
"question": question,
"answer": answer,
"messages": messages,
"prediction": prediction,
"termination": termination
}
return result
tool_python
执行python代码。((code;Interpreter)rightarrow (stdout, stderr))
def call(self, params, files= None, timeout = 50, **kwargs) -> str:
try:
# params 即为要执行的code代码
code=params
last_error = None
# 尝试多次
for attempt in range(8):
try:
# Randomly sample an endpoint for each attempt
endpoint = random.choice(SANDBOX_FUSION_ENDPOINTS)
print(f"Attempt {attempt + 1}/5 using endpoint: {endpoint}")
# 执行code
code_result = run_code(RunCodeRequest(code=code, language='python', run_timeout=timeout), max_attempts=1, client_timeout=timeout, endpoint=endpoint)
print("[Python] Code Result", code_result)
result = []
# 记录code 的标准输出和错误
if code_result.run_result.stdout:
result.append(f"stdout:n{code_result.run_result.stdout}")
if code_result.run_result.stderr:
result.append(f"stderr:n{code_result.run_result.stderr}")
if code_result.run_result.execution_time >= timeout-1:
result.append(f"[PythonInterpreter Error] TimeoutError: Execution timed out.")
result = 'n'.join(result)
print('SUCCESS RUNNING TOOL')
return result if result.strip() else 'Finished execution.'
# code执行超时
except Timeout as e:
last_error = f'[Python Interpreter Error] TimeoutError: Execution timed out on endpoint {endpoint}.'
print(f"Timeout on attempt {attempt + 1}: {last_error}")
if attempt == 4: # Last attempt
return last_error
continue
# code执行错误
except Exception as e:
last_error = f'[Python Interpreter Error]: {str(e)} on endpoint {endpoint}'
print(f"Error on attempt {attempt + 1}: {last_error}")
if attempt == 4: # Last attempt
return last_error
continue
return last_error if last_error else '[Python Interpreter Error]: All attempts failed.'
except Exception as e:
return f"[Python Interpreter Error]: {str(e)}"
tool_visit
搜索具体的url,并根据goal总结返回。((url, goal;pi)rightarrow summary)
JINA_API_KEYS = os.getenv("JINA_API_KEYS", "")
def readpage_jina(self, url: str, goal: str) -> str:
"""
Attempt to read webpage content by alternating between jina and aidata services.
Args:
url: The URL to read
goal: The goal/purpose of reading the page
Returns:
str: The webpage content or error message
"""
# def call_server用于根据goal总结网页的内容
summary_page_func = self.call_server
max_retries = int(os.getenv('VISIT_SERVER_MAX_RETRIES', 1))
# 使用jina将url的网页信息转化为 markdown格式
content = self.html_readpage_jina(url)
#############################################################
# 处理markdown的网页信息 content
#############################################################
# 如果网页信息可以被jina提取
if content and not content.startswith("[visit] Failed to read page.") and content != "[visit] Empty content." and not content.startswith("[document_parser]"):
# pre-process 先处理content的token长度,避免llm的上下文超长
content = truncate_to_tokens(content, max_tokens=95000)
# 总结promopt
messages = [{"role":"user","content": EXTRACTOR_PROMPT.format(webpage_content=content, goal=goal)}]
parse_retry_times = 0
# 得到网页总结后的信息 raw
raw = summary_page_func(messages, max_retries=max_retries)
summary_retries = 3
# 如果raw少于10个字符,那么认为总结失败,因为raw是json格式,```json {"rational":..., "evidence":..., "summary":...}```
while len(raw) = 0:
# 尝试截断30%的长度
truncate_length = int(0.7 * len(content)) if summary_retries > 0 else 25000
status_msg = (
f"[visit] Summary url[{url}] "
f"attempt {3 - summary_retries + 1}/3, "
f"content length: {len(content)}, "
f"truncating to {truncate_length} chars"
) if summary_retries > 0 else (
f"[visit] Summary url[{url}] failed after 3 attempts, "
f"final truncation to 25000 chars"
) # 截断30%不行,尝试只留下25000字符
print(status_msg)
content = content[:truncate_length]
extraction_prompt = EXTRACTOR_PROMPT.format(
webpage_content=content,
goal=goal
)
messages = [{"role": "user", "content": extraction_prompt}]
raw = summary_page_func(messages, max_retries=max_retries)
summary_retries -= 1
# 解析总结的格式
parse_retry_times = 2
if isinstance(raw, str):
raw = raw.replace("```json", "").replace("```", "").strip()
while parse_retry_times = 3:
useful_information = "The useful information in {url} for user goal {goal} as follows: nn".format(url=url, goal=goal)
useful_information += "Evidence in page: n" + "The provided webpage content could not be accessed. Please check the URL or file format." + "nn"
useful_information += "Summary: n" + "The webpage content could not be processed, and therefore, no information is available." + "nn"
# 解析成功,把evidence和summary一并返回
else:
useful_information = "The useful information in {url} for user goal {goal} as follows: nn".format(url=url, goal=goal)
useful_information += "Evidence in page: n" + str(raw["evidence"]) + "nn"
useful_information += "Summary: n" + str(raw["summary"]) + "nn"
if len(useful_information)
jina举例
输入https://r.jina.ai/+{url(https://www.axtonliu.ai/newsletters/ai-2/posts/jina-reader-api-four-usage-methods-guide)}
原始网页:
jina由三部分组成:
Title: Jina Reader API完全指南:4种实用集成方案详解 | AI开发教程
URL Source: https://www.axtonliu.ai/newsletters/ai-2/posts/jina-reader-api-four-usage-methods-guide
Markdown Content:
构建知识库,或者分析各种文章数据,是大家使用 AI 很重要的一个应用场景,
tool_file
根据url的文件,和goal,返回总结信息,类似于tool_visit。但是要借助于file_tools进行指定url文件的读取(visit是借用jina进行指定url网页信息的读取)。
"""
input:
- query/goal: str
- Docs: List[file]/List[url]
- file type: 'pdf', 'docx', 'pptx', 'txt', 'html', 'csv', 'tsv', 'xlsx', 'xls', 'doc', 'zip', '.mp4', '.mov', '.avi', '.mkv', '.webm', '.mp3', '.wav', '.aac', '.ogg', '.flac'
output:
- answer: str
- useful_information: str
"""
tool_search
调用google 进行search。((q;Enginer)rightarrow docs)
tool_scholar
类似于tool_search,区别在于 tool_scholar在goole scholar上进行文章的搜索
Prompt
分为react的system prompt,以及visit 总结的extract prompt
SYSTEM_PROMPT = """You are a deep research assistant. Your core function is to conduct thorough, multi-source investigations into any topic. You must handle both broad, open-domain inquiries and queries within specialized academic fields. For every request, synthesize information from credible, diverse sources to deliver a comprehensive, accurate, and objective response. When you have gathered sufficient information and are ready to provide the definitive response, you must enclose the entire final answer within tags.
# Tools
You may call one or more functions to assist with the user query.
You are provided with function signatures within XML tags:
{"type": "function", "function": {"name": "search", "description": "Perform Google web searches then returns a string of the top search results. Accepts multiple queries.", "parameters": {"type": "object", "properties": {"query": {"type": "array", "items": {"type": "string", "description": "The search query."}, "minItems": 1, "description": "The list of search queries."}}, "required": ["query"]}}}
{"type": "function", "function": {"name": "visit", "description": "Visit webpage(s) and return the summary of the content.", "parameters": {"type": "object", "properties": {"url": {"type": "array", "items": {"type": "string"}, "description": "The URL(s) of the webpage(s) to visit. Can be a single URL or an array of URLs."}, "goal": {"type": "string", "description": "The specific information goal for visiting webpage(s)."}}, "required": ["url", "goal"]}}}
{"type": "function", "function": {"name": "PythonInterpreter", "description": "Executes Python code in a sandboxed environment. To use this tool, you must follow this format:
1. The 'arguments' JSON object must be empty: {}.
2. The Python code to be executed must be placed immediately after the JSON block, enclosed within and tags.
IMPORTANT: Any output you want to see MUST be printed to standard output using the print() function.
Example of a correct call:
{"name": "PythonInterpreter", "arguments": {}}
import numpy as np
# Your code here
print(f"The result is: {np.mean([1,2,3])}")
", "parameters": {"type": "object", "properties": {}, "required": []}}}
{"type": "function", "function": {"name": "google_scholar", "description": "Leverage Google Scholar to retrieve relevant information from academic publications. Accepts multiple queries. This tool will also return results from google search", "parameters": {"type": "object", "properties": {"query": {"type": "array", "items": {"type": "string", "description": "The search query."}, "minItems": 1, "description": "The list of search queries for Google Scholar."}}, "required": ["query"]}}}
{"type": "function", "function": {"name": "parse_file", "description": "This is a tool that can be used to parse multiple user uploaded local files such as PDF, DOCX, PPTX, TXT, CSV, XLSX, DOC, ZIP, MP4, MP3.", "parameters": {"type": "object", "properties": {"files": {"type": "array", "items": {"type": "string"}, "description": "The file name of the user uploaded local files to be parsed."}}, "required": ["files"]}}}
For each function call, return a json object with function name and arguments within XML tags:
{"name": , "arguments": }
Current date: """
EXTRACTOR_PROMPT = """Please process the following webpage content and user goal to extract relevant information:
## **Webpage Content**
{webpage_content}
## **User Goal**
{goal}
## **Task Guidelines**
1. **Content Scanning for Rational**: Locate the **specific sections/data** directly related to the user's goal within the webpage content
2. **Key Extraction for Evidence**: Identify and extract the **most relevant information** from the content, you never miss any important information, output the **full original context** of the content as far as possible, it can be more than three paragraphs.
3. **Summary Output for Summary**: Organize into a concise paragraph with logical flow, prioritizing clarity and judge the contribution of the information to the goal.
**Final Output Format using JSON format has "rational", "evidence", "summary" feilds**
"""
登录查看全部
参与评论
手机查看
返回顶部