注意:
empty
用于创建一个未初始化的张量,其值是随机的
与torch.randn的区别在于,torch.randn是从正态分布中采样的
torch.empty(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False, memory_format=torch.contiguous_format) → Tensor
torch.empty((2,3), dtype=torch.int64)
tensor([[ 9.4064e+13, 2.8000e+01, 9.3493e+13],
[ 7.5751e+18, 7.1428e+18, 7.5955e+18]])
zeros
torch.zeros(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
torch.zeros(2, 3)
tensor([[ 0., 0., 0.],
[ 0., 0., 0.]])
randn
(out_i sim mathcal{N}(0, 1)),满足正态分布
torch.randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False)
torch.randn(2, 3)
tensor([[ 1.5954, 2.8929, -1.0923],
[ 1.1719, -0.4709, -0.1996]])
randint
生成制定范围[low, high) 和形状size的tensor
torch.randint(low=0, high, size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
torch.randint(3, 10, (2, 2))
tensor([[4, 5],
[6, 7]])
arange
和list(range())的原理相同
torch.arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
torch.arange(5)
tensor([ 0, 1, 2, 3, 4])
torch.arange(1, 4)
tensor([ 1, 2, 3])
torch.arange(1, 2.5, 0.5)
tensor([ 1.0000, 1.5000, 2.0000])
range(deprecated)
类似于list(range())的用法,但是,torch.range的返回的最后一个元素是可以为end的
torch.range(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
# 0.5 指的是每步的大小
torch.range(1, 4, 0.5)
tensor([ 1.0000, 1.5000, 2.0000, 2.5000, 3.0000, 3.5000, 4.0000])
linspace
不同于torch.range,这里的step指的是有多少步,根据步数,计算每步的大小
torch.linspace的第一个元素一定是start,最后一个元素一定是end
torch.linspace(start, end, steps, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
torch.linspace(start=-10, end=10, steps=5)
tensor([-10., -5., 0., 5., 10.])
torch.linspace(start=-10, end=10, steps=1)
tensor([-10.]
eye
返回对角线矩阵
torch.eye(n, m=None, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
torch.eye(3)
tensor([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
full
把一个数字扩展到指定的形状上,是ones zeros的一般化
torch.full((2,3), 0.0) = torch.zeros((2,3))
torch.full((2,3), 1.0) = torch.ones((2,3))
torch.full(size, fill_value, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
torch.full((2, 3), 3.141592)
tensor([[ 3.1416, 3.1416, 3.1416],
[ 3.1416, 3.1416, 3.1416]])
zeros_like
返回于input tensor形状相同的元素全是0的tensor
torch.zeros_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) → Tensor
input = torch.empty(2, 3)
torch.zeros_like(input)
tensor([[ 0., 0., 0.],
[ 0., 0., 0.]])
premute
改变维度的顺序
torch.permute(input, dims) -> Tensor
x = torch.randn(2, 3, 5)
x.size()
torch.Size([2, 3, 5])
torch.permute(x, (2, 0, 1)).size()
torch.Size([5, 2, 3])
reshape
改变tensor的形状,但是元素的数量和值不改变
torch.reshape(input, shape) → Tensor
a = torch.arange(4.)
torch.reshape(a, (2, 2))
tensor([[ 0., 1.],
[ 2., 3.]])
b = torch.tensor([[0, 1], [2, 3]])
torch.reshape(b, (-1,))
tensor([ 0, 1, 2, 3])
transpose
将两个指定维度的位置进行替换
torch.permute(x, (0,2,1)) = torch.transpose(x, 1, 2)
torch.transpose(input, dim0, dim1) -> Tensor
x = torch.randn(2, 3)
tensor([[ 1.0028, -0.9893, 0.5809],
[-0.1669, 0.7299, 0.4942]])
torch.transpose(x, 0, 1)
tensor([[ 1.0028, -0.1669],
[-0.9893, 0.7299],
[ 0.5809, 0.4942]])
view
tensor.view 创建的张量 tensor_view 是原始张量 tensor 的一个视图(view),而不是一个新的张量。因此,tensor_view 不会单独存储梯度信息。梯度信息会直接存储在原始张量 tensor 中。
Tensor.view而不是torch.view
Tensor.view(*shape) → Tensor
x = torch.randn(4, 4)
x.size()
torch.Size([4, 4])
y = x.view(16)
y.size()
torch.Size([16])
z = x.view(-1, 8) # the size -1 is inferred from other dimensions
z.size()
torch.Size([2, 8])
b_view 只是b的一个不同形状的视图,后续使用b_view导致的属性的修改还是保存在b中
a = torch.randn(1,6)
b = torch.randn(3,2,requires_grad=True)
b_view = b.view(6,1)
loss = a@b_view
loss.backward()
b_view.grad
空
b.grad
tensor([[-0.3020, -1.4392],
[ 0.7194, 0.1363],
[-1.3413, -0.2453]])
此外,只有在内存中连续存储的tensor才可以使用view,否则使用reshape,reshape和view的性质一致
其中,tensor的转置会导致tensor是不连续的
tensor = torch.randn(2,3)
>>> # 转置张量,使其变为非连续
>>> tensor_transposed = tensor.transpose(0, 1)
>>> print("Transposed tensor:")
Transposed tensor:
>>> print(tensor_transposed)
tensor([[ 2.2194, -0.6988],
[ 0.5496, 0.2167],
[-0.2635, -2.5029]])
>>> print("Is the transposed tensor contiguous?", tensor_transposed.is_contiguous())
Is the transposed tensor contiguous? False
squeeze
把大小是1的维度 remove掉
When dim is given, a squeeze operation is done only in the given dimension(s). If input is of shape: (A×1×B)(A×1×B), squeeze(input, 0) leaves the tensor unchanged, but squeeze(input, 1) will squeeze the tensor to the shape (A×B)(A×B).
torch.squeeze(input: Tensor, dim: Optional[Union[int, List[int]]]) → Tensor
x = torch.zeros(2, 1, 2, 1, 2)
x.size()
torch.Size([2, 1, 2, 1, 2])
y = torch.squeeze(x)
y.size()
torch.Size([2, 2, 2])
y = torch.squeeze(x, 0)
y.size()
torch.Size([2, 1, 2, 1, 2])
y = torch.squeeze(x, 1)
y.size()
torch.Size([2, 2, 1, 2])
y = torch.squeeze(x, (1, 2, 3))
torch.Size([2, 2, 2])
unsqueeze
添加维度
x = torch.randn(4)
torch.unsqueeze(x, 0).size()
torch.Size(1,4)
torch.unsqueeze(x, 1).size()
torch.Size(4,1)
size
t.size() = t.shape. tuple(t.size())返回一个维度的元组
待更新。。。
待更新。。。
登录查看全部
参与评论
手机查看
返回顶部