MCP(全称为Model Context Protocol,模型上下文协议)是一种面向大模型交互过程的通用上下文协议标准。其核心目标在于为模型构建一个结构化、可控、可扩展的语义执行环境,使语言模型能够在统一的上下文管理体系下进行任务调度、工具调用、资源协作与状态保持,从而突破传统Prompt Engineering在多轮交互、指令组合与行为稳定性方面的瓶颈。
在传统的大模型应用中,模型本身只能被动地接收输入、产生输出,要让它调用外部工具或访问自定义的上下文,就需要在代码里逐条写好 API 调用、认证、错误处理的逻辑,既繁琐又难以维护。MCP的初衷,就是将这些"上下文管理"和"工具调用"能力抽象成一个标准化的通信协议,让大模型应用只需关注"我想用什么资源",由专门的 MCP 服务端来真正执行调用、管理状态、返回结果。
MCP 官方GitHub
有一种说法是,传统的大模型应用叫做Prompt Engineering,而MCP出现后,大模型应用开发应该叫做Context Engineering。传统的提示工程常常依赖于简单的字符串拼接,这种方式有几个问题:
ignore all previous instructions
,模型可能被欺骗。工具是AI模型可以调用以执行特定操作的函数。它们允许模型与外部系统交互,执行有副作用的操作,如:
工具由模型控制,这意味着AI决定是否以及何时使用它们。工具调用可能会产生副作用,其结果可以反馈到对话中。
资源是提供给模型的只读上下文单元(数据源)。它们可以是:
资源由应用程序控制,托管方或开发人员决定公开哪些数据以及如何公开。读取资源没有副作用,类似于仅获取数据的GET请求。资源提供可在需要时注入模型上下文的内容(例如,在问答场景中检索到的文档)。
提示模板是可重复使用的提示模板或指令,可以根据需要调用。它们由用户控制或由开发人员预定义。提示可能包含常见任务或指导性工作流程的模板(例如,代码审查模板或问答格式)。
提示模板的关键特性包括:
采样是工具与LLM交互以生成文本的机制。通过采样,工具可以请求LLM生成文本内容,例如生成诗歌、文章或其他文本内容。采样允许工具利用LLM的能力来创建内容,而不仅限于执行预定义的操作。
Root表示一次语义执行的起点,携带资源引用、执行目标、响应格式等信息,支持多并发执行流。它作为语义执行的基础输入结构,可以包含多个Prompt和工具,为模型提供完整的上下文环境。
日志记录是MCP中的一个重要功能,允许服务器和工具向客户端发送日志信息。通过日志记录,开发者可以跟踪工具执行过程、调试问题以及监控系统状态。MCP支持多种日志级别,包括调试(debug)、信息(info)、警告(warning)和错误(error)等。
通知机制允许服务器向客户端发送实时更新信息,例如资源变更、工具列表更新等。通过通知,客户端可以及时了解服务器状态的变化,并相应地更新用户界面或执行其他操作。常见的通知类型包括资源更新通知、工具列表变更通知、提示列表变更通知等。
Server 是一个独立的程序或服务,它通过 MCP 协议向 MCP 客户端暴露特定的功能、工具或数据资源。
角色职责:
Host 是用户直接交互的应用程序或环境。它通常是AI应用程序的入口点,比如:
角色职责:
Client 是内置在 Host 应用程序中的一个组件,它作为 Host 和 MCP Server 之间的桥梁。一个Host内可以有多个Client。
角色职责:
本文来自博客园,作者:花酒锄作田,转载请注明原文链接:https://www.cnblogs.com/XY-Heruo/p/19091500
参与评论
手机查看
返回顶部