如:
由矩阵性质和意义(参数项直接保留在矩阵中)可得:
[tag{1} f'_{x^T}(x)= begin{bmatrix} a_1&a_2&a_3\ b_1&b_2&b_3 end{bmatrix}=A ]
如:
[x= begin{bmatrix} x_1&x_2 end{bmatrix}, A= begin{bmatrix} a&b\ c&d end{bmatrix}, x^T= begin{bmatrix} x_1\ x_2 end{bmatrix} ]
[Rightarrow f(x)= begin{bmatrix} ax_1+cx_2&bx_1+dx_2 end{bmatrix} cdot begin{bmatrix} x_1\ x_2 end{bmatrix} ]
[qquadquad = begin{bmatrix} a{x_1}^2+bx_1x_2+cx_1x_2+dx_2^2 end{bmatrix} ]
则有:
[f'_x(x)= begin{bmatrix} 2ax_1+bx_2+cx_2&2dx_2+bx_1+cx_1 end{bmatrix} ]
[tag{2} = begin{bmatrix} a&b\ c&d end{bmatrix} cdot begin{bmatrix} x_1&x_2 end{bmatrix} + begin{bmatrix} a&c\ b&d end{bmatrix} cdot begin{bmatrix} x_1&x_2 end{bmatrix} =(A+A^T)x ]
如:
[x^T= begin{bmatrix} x_1&x_2 end{bmatrix}, a= begin{bmatrix} a_1\ a_2 end{bmatrix} ]
[Rightarrow f(x)= x^Tcdot a= begin{bmatrix} x_1a_1+x_2a_2 end{bmatrix} =xcdot a^T ]
又:
[x= begin{bmatrix} x_1\ x_2 end{bmatrix} ]
则由矩阵的性质及意义(参数项直接保留在矩阵中),有:
[tag{3} f'_x(x)= (xcdot a^T)_x' = begin{bmatrix} a_1\ a_2 end{bmatrix} =a ]
如:
[x^T= begin{bmatrix} x_1&x_2&x_3 end{bmatrix}, A= begin{bmatrix} a_1&a_2\ a_3&a_4\ a_5&a_6 end{bmatrix}, y= begin{bmatrix} y_1\ y_2\ end{bmatrix} ]
[Rightarrow f(x) =x^Tcdot Acdot y= begin{bmatrix} a_1x_1+a_3x_2+a_5x_3&a_2x_1+a_4x_2+a_6x_3\ end{bmatrix} cdot begin{bmatrix} y_1\ y_2\ end{bmatrix} ]
[qquadqquadqquadqquadqquadquad = begin{bmatrix} (a_1x_1+a_3x_2+a_5x_3)cdot y_1+(a_2x_1+a_4x_2+a_6x_3)cdot y_2 end{bmatrix} ]
则有:
[f'_x(x)= begin{bmatrix} (a_1+a_3+a_5)cdot y_1+(a_2+a_4+a_6)cdot y_2 end{bmatrix} =A cdot y ]
[tag{4} f'_A(x)= begin{bmatrix} (x_1)cdot y_1+(x_1)cdot y_2\ (x_2)cdot y_1+(x_2)cdot y_2\ (x_3)cdot y_1+(x_3)cdot y_2 end{bmatrix} =xcdot y^T ]
设存在矩阵(X_{N times n},向量a_{n times 1},y_{N times 1})
设(f(x)=||Xcdot a-y||^2),则(f'_a(x))的求解过程如下:
由范数相关性质可得:
[f(x)=(Xcdot a-y)cdot (Xcdot a-y)^T ]
[qquad qquad =(Xcdot a-y)cdot (a^Tcdot X^T -y^T) ]
[tag{5} qquad qquadqquadqquadqquadquad =acdot X X^T cdot a^T -Xcdot acdot y^T-ycdot a^T cdot X^T + yy^T ]
式(5)中:
对于项(acdot X X^T cdot a^T),由常规矩阵求导的式(2)可得:
[(acdot X X^T cdot a^T)'_a=(XX^T+X^TX)cdot a=2XX^Tcdot a ]
对于项(Xcdot acdot y^T),由常规矩阵求导的式(3)可得:
[(Xcdot acdot y^T)_a'=(y^Tcdot Xcdot a )_a'=[(X^Tcdot y )^Tcdot a] _a'=X^Tcdot y ]
对于项(ycdot a^T cdot X^T):
[(ycdot a^T cdot X^T)'_a=(a^Tcdot X^Tcdot y)'_a=X^Tcdot y ]
由上可得:
[f'_a(x)=(||Xcdot a-y||^2)_a'=2(XX^Tcdot a-X^Tcdot y) ]
设存在矩阵(A_{mm}),且(tr(A))为矩阵(A)的迹,则有:
[tr(A)=Sigma_{i=1}^m a_{ii} ]
由矩阵的特性和意义(参数项直接保留在矩阵中)可得:
[tag{6} Rightarrow tr(A)'_A=I= begin {bmatrix} 1&&&\ &1&&\ &&...&\ &&&1\ end{bmatrix} ]
设存在矩阵(A_{mm}、B_{mm}),且(tr(Acdot B))为(Acdot B)的迹,则有:
[tr(Acdot B)=Sigma_{i=1}^mSigma_{j=1}^m a_{ij}b_{ji} ]
由矩阵的特性和意义(参数项直接保留在矩阵中)可得:
[tag{7} tr'_A(Acdot B)=(Sigma_{i=1}^mSigma_{j=1}^m a_{ij}b_{ji})'_A=B^T ]
设存在矩阵(A_{mm}),且(tr(Acdot A^T))为(Acdot A^T)的迹,则有:
[tr(Acdot A^T)=Sigma_{i=1}^mSigma_{j=1}^m a_{ij}a_{ji}=Sigma_{i=1}^mSigma_{j=1}^m a^2_{ij} ]
由矩阵的特性和意义(参数项直接保留在矩阵中)可得:
[tag{8} tr'_A(Acdot A^T)=(Sigma_{i=1}^mSigma_{j=1}^m a^2_{ij})'_A=(A^2)'_A=2cdot A ]
设存在矩阵(A_{mm}),(|A|)是A的行列式,(a_{ij})是A中任一元素,(A_{ij})是(a_{ij})的代数余子式
则有:
[|A|=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{im}A_{im} ]
[Rightarrow |A|'_A=(a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{im}A_{im})'_A ]
[qquadqquadqquadqquad = begin {bmatrix} (a_{11}A_{11}+a_{12}A_{12}+...+a_{1m}A_{1m})'_A\ (a_{21}A_{21}+a_{22}A_{22}+...+a_{2m}A_{2m})'_A\ ......\ (a_{m1}A_{m1}+a_{m2}A_{m2}+...+a_{mm}A_{mm})'_A end {bmatrix} ]
[tag{9} qquadqquadquad = begin {bmatrix} A_{11}&A_{12}&...&A_{1m}\ A_{21}&A_{22}&...&A_{2m}\ &&......&\ A_{m1}&A_{m2}&...&A_{mm}\ end {bmatrix} =A^{*T} ]
由矩阵的逆相关性质(A^{-1}=frac{A^*}{|A|})可得:
[tag{10} |A|'_A=|A|cdot (A^{-1})^T ]
参与评论
手机查看
返回顶部