Llama Nuts and Bolts是Github上使用Go语言从零重写Llama3.1 8B-Instruct模型推理过程(80亿参数规模)的实战类开源项目,其作者是来自土耳其的Adil Alper DALKIRAN。
如果你对于 LLM(大语言模型)和 Transformers 的工作原理感兴趣,并对相关概念略知一二,但仍想深入理解,那么这个项目非常适合你!
这个项目最大的特色是:
使用Go语言从零开发,不依赖任何机器学习库和数学计算库,走出 Python 生态的舒适区
配备完整的大模型推理的流程图,透视大模型如何运作的细节
完备的文档和代码说明,能够亲身体验机器学习的基础知识、Transformers 模型、注意力机制、旋转位置嵌入(RoPE)以及背后的数学原理
Llama Nuts and Bolts项目代码和文档地址:
需要注意的是,该项目仅为教育目的开发,未经过生产环境或商业使用测试。其目标是创建一个实验性项目,能够在完全不依赖 Python 生态系统的情况下对 Llama 3.1 8B-Instruct 模型进行推理。
这个项目使用Go语言,不使用任何现有的机器学习或数学计算库,从零实现一个控制台应用程序,通过使用预训练的 Llama 3.1 8B-Instruct 模型参数生成文本输出。
开发这个项目的过程使作者深入研究了 transformers 模型的内部结构,并发现了之前没有意识到的细节,包括作者已经了解的理论知识,还有需要重新学习的新内容,并从中获得了新见解。
Llama Nuts and Bolts 的第一个版本于 2024 年 3 月 12 日发布,适配 Llama 2 模型,而其最新的版本支持Llama 3.1 8B-Instruct模型。
话不多说,先上图。
与经典transformers架构相比,Llama 的transformers架构具有几个显著特征:
参与评论
手机查看
返回顶部