性质1的证明:(A cdot A^{-1}=E)
[(lambda cdot A)^{-1}=frac{1}{lambda}cdot A^{-1} ]
性质2的证明:(lambda cdot Acdot frac{1}{lambda}cdot A^{-1}=E)
[(Acdot B)^{-1}=B^{-1}cdot A^{-1} ]
性质3的证明:(A cdot B cdot B^{-1} cdot A^{-1}=A cdot E cdot A^{-1}=E)
[(A^T)^{-1}=(A^{-1})^T ]
性质4的证明:(A^T cdot (A^{-1})^T=(A^{-1} cdot A)^T=E^T=E)
设存在二阶矩阵A:
[A= begin{bmatrix} a &b \ c &d \ end{bmatrix} ]
则:
[|A|=ad-bc ]
[A^*=begin{bmatrix} A_{11} &A_{21} \ A_{12} &A_{22}\ end{bmatrix} = begin{bmatrix} d &-b \ -c &a\ end{bmatrix}\ ]
[Rightarrow A^{-1}= frac {A^*}{|A|}=frac {1}{ad-bc} cdot begin{bmatrix} d &-b \ -c &a\ end{bmatrix}\ ]
[E^{-1}=E ]
设存在对角矩阵A:
[A= begin{bmatrix} lambda_1 &0&...&0 &0 &0 \ 0 &lambda_2 & 0 &...&0 &0\ 0 & 0 & lambda_3 &0 &... &0\ & & &......\ 0 & 0 & 0 &... &0 &lambda_n end{bmatrix}\ ]
则存在(A^{-1}),使(A cdot A^{-1}=E):
[A^{-1}= begin{bmatrix} lambda_1^{-1} &0&...&0 &0 &0 \ 0 &lambda_2^{-1} & 0 &...&0 &0\ 0 & 0 & lambda_3^{-1} &0 &... &0\ & & &......\ 0 & 0 & 0 &... &0 &lambda_n^{-1} end{bmatrix}\ ]
设:
存在数值(y_i,a_j,x_{ij}),其中:
[y_i in R^1(i=1,2,3,...,N)\ a_j in R(j=1,2,3,...,n)\ x_{ij} in R^n(i=1,2,3,...,N;j=1,2,3,...,n) ]
且(y_i,a_j,x_{ij})满足:
[begin{cases} y_1=a_1x_{11}+a_2x_{12}+a_3x_{13}+...+a_nx_{1n}\ y_2=a_1x_{21}+a_2x_{22}+a_3x_{23}+...+a_nx_{2n}\ y_3=a_1x_{31}+a_2x_{32}+a_3x_{33}+...+a_nx_{3n}\ ...\ y_N=a_1x_{N1}+a_2x_{N2}+a_3x_{N3}+...+a_nx_{Nn}\ end{cases} ]
则(y_i,a_j,x_{ij})可对应以下矩阵Y、A、X:
[Y= begin{bmatrix} y_1\ y_2\ y_3\ ...\ y_N end{bmatrix}, A=begin{bmatrix} a_1\ a_2\ a_3\ ...\ a_n end{bmatrix}, X= begin{bmatrix} x_{11} & x_{12} & x_{13} & ... & x_{1n}\ x_{21} & x_{22} & x_{23} & ... & x_{2n}\ x_{31} & x_{32} & x_{33} & ... & x_{3n}\ &&......\ x_{N1} & x_{N2} & x_{N3} & ... & x_{Nn}\ end{bmatrix} ]
(y_i,a_j,x_{ij})的关系用矩阵可表示为:(Y=Acdot X)
若现已知存在矩阵(Y、X、X^{-1}),则在n=N的情况下可求得矩阵A:
[A=Ycdot X^{-1} ]
参与评论
手机查看
返回顶部