Erlo

MySQL性能分析(三)之optimizer_trace详解

2025-10-01 04:30:41 发布   38 浏览  
页面报错/反馈
收藏 点赞

一、概述

optimizer_traceMySQL 5.6引入的一项跟踪功能,它可以跟踪优化器做出的各种决策(比如访问表的方法、各种开销计算、各种转换等),并将跟踪结果记录到information_schema.optimizer_trace表中。此功能默认关闭,开启后,可分析如下语句:

  • select
  • insert
  • replace
  • update
  • delete
  • explain
  • set
  • declare
  • case
  • if
  • return
  • call

二、开启及关闭

2.1 开启optimizer_trace

mysql命令行中,使用如下命令开启optimizer_trace

set optimizer_trace="enabled=on",end_markers_in_json=on;

也可用set global全局开启。但即使全局开启optimizer_trace,每个Session也只能跟踪它自己执行的语句:

set global optimizer_trace="enabled=on",end_markers_in_json=on;

2.2 关闭optimizer_trace

mysql命令行中,使用如下命令关闭optimizer_trace

SET optimizer_trace="enabled=off";

三、使用optimizer_trace

3.1 相关参数

optimizer_trace

  • optimizer_trace总开关,默认值:enabled=off,one_line=off
  • enabled:是否开启optimizer_trace;on表示开启,off表示关闭。
  • one_line:是否开启单行存储。on表示开启;off表示关闭,将会用标准的JSON格式化存储。设置成on将会有良好的格式,设置成off可节省一些空间。

optimizer_trace_features

  • 控制optimizer_trace跟踪的内容,默认值:greedy_search=on,range_optimizer=on,dynamic_range=on,repeated_subselect=on,表示开启所有跟踪项。

greedy_search:是否跟踪贪心搜索

  • range_optimizer:是否跟踪范围优化器

dynamic_range:是否跟踪动态范围优化

  • repeated_subselect:是否跟踪子查询,如果设置成off,只跟踪第一条Item_subselect的执行

optimizer_trace_limit

  • 控制optimizer_trace展示多少条结果,默认1

optimizer_trace_max_mem_size

  • optimizer_trace堆栈信息允许的最大内存,默认1048576

optimizer_trace_offset

  • 第一个要展示的optimizer trace的偏移量,默认-1。

end_markers_in_json

  • 如果JSON结构很大,则很难将右括号和左括号配对。为了帮助读者阅读,可将其设置成on,这样会在右括号附近加上注释,默认off。

optimizer_trace_limit和optimizer_trace_offset这两个参数经常配合使用,例如:SET optimizer_trace_offset=, optimizer_trace_limit=
这两个参数配合使用,有点类似MySQL里面的 limit语句。
默认情况下,由于optimizer_trace_offset=-1,optimizer_trace_limit=1,记录最近的一条SQL语句,展示时,每次展示1条数据;
如果改成SET optimizer_trace_offset=-2, optimizer_trace_limit=1,则会记录倒数第二条SQL语句;

三、使用

3.1 展示条目

开启optimizer_trace功能,并设置要展示的数据条目数:

set optimizer_trace="enabled=on", end_markers_in_json=on;
set optimizer_trace_offset=-30, optimizer_trace_limit=30;

3.2 分析SQL语句

发送你想要分析的SQL语句,例如:

select *
from salaries
where from_date = '1986-06-26'
and to_date = '1987-06-26';

使用如下语句分析,即可获得类似如下的结果:

  mysql> select * from information_schema.optimizer_trace limit 30 G;
  *************************** 1. row ***************************
                            QUERY: select *
  from salaries
where from_date = '1986-06-26'
    and to_date = '1987-06-26'
                              TRACE: {
    "steps": [
      {
        "join_preparation": {
          "select#": 1,
          "steps": [
            {
              "expanded_query": "/* select#1 */ select `salaries`.`emp_no` AS `emp_no`,`salaries`.`salary` AS `salary`,`salaries`.`from_date` AS `from_date`,`salaries`.`to_date` AS `to_date` from `salaries` where ((`salaries`.`from_date` = '1986-06-26') and (`salaries`.`to_date` = '1987-06-26'))"
            }
          ] /* steps */
        } /* join_preparation */
      },
      {
        "join_optimization": {
          "select#": 1,
          "steps": [
            {
              "condition_processing": {
                "condition": "WHERE",
                "original_condition": "((`salaries`.`from_date` = '1986-06-26') and (`salaries`.`to_date` = '1987-06-26'))",
                "steps": [
                  {
                    "transformation": "equality_propagation",
                    "resulting_condition": "(multiple equal('1986-06-26', `salaries`.`from_date`) and multiple equal('1987-06-26', `salaries`.`to_date`))"
                  },
                  {
                    "transformation": "constant_propagation",
                    "resulting_condition": "(multiple equal('1986-06-26', `salaries`.`from_date`) and multiple equal('1987-06-26', `salaries`.`to_date`))"
                  },
                  {
                    "transformation": "trivial_condition_removal",
                    "resulting_condition": "(multiple equal(DATE'1986-06-26', `salaries`.`from_date`) and multiple equal(DATE'1987-06-26', `salaries`.`to_date`))"
                  }
                ] /* steps */
              } /* condition_processing */
            },
            {
              "substitute_generated_columns": {
              } /* substitute_generated_columns */
            },
            {
              "table_dependencies": [
                {
                  "table": "`salaries`",
                  "row_may_be_null": false,
                  "map_bit": 0,
                  "depends_on_map_bits": [
                  ] /* depends_on_map_bits */
                }
              ] /* table_dependencies */
            },
            {
              "ref_optimizer_key_uses": [
                {
                  "table": "`salaries`",
                  "field": "from_date",
                  "equals": "DATE'1986-06-26'",
                  "null_rejecting": false
                },
                {
                  "table": "`salaries`",
                  "field": "to_date",
                  "equals": "DATE'1987-06-26'",
                  "null_rejecting": false
                }
              ] /* ref_optimizer_key_uses */
            },
            {
              "rows_estimation": [
                {
                  "table": "`salaries`",
                  "range_analysis": {
                    "table_scan": {
                      "rows": 2838216,
                      "cost": 286799
                    } /* table_scan */,
                    "potential_range_indexes": [
                      {
                        "index": "PRIMARY",
                        "usable": false,
                        "cause": "not_applicable"
                      },
                      {
                        "index": "salaries_from_date_to_date_index",
                        "usable": true,
                        "key_parts": [
                          "from_date",
                          "to_date",
                          "emp_no"
                        ] /* key_parts */
                      }
                    ] /* potential_range_indexes */,
                    "setup_range_conditions": [
                    ] /* setup_range_conditions */,
                    "group_index_range": {
                      "chosen": false,
                      "cause": "not_group_by_or_distinct"
                    } /* group_index_range */,
                    "skip_scan_range": {
                      "potential_skip_scan_indexes": [
                        {
                          "index": "salaries_from_date_to_date_index",
                          "usable": false,
                          "cause": "query_references_nonkey_column"
                        }
                      ] /* potential_skip_scan_indexes */
                    } /* skip_scan_range */,
                    "analyzing_range_alternatives": {
                      "range_scan_alternatives": [
                        {
                          "index": "salaries_from_date_to_date_index",
                          "ranges": [
                            "0xda840f 

由上面的结果可知,OPTIMIZER_TRACE有四个字段:

  • query:查询语句
  • trace:query字段对应语句的跟踪信息
  • missing_bytes_beyond_max_mem_size:跟踪信息过长时,被截断的跟踪信息的字节数。
  • insufficient_privileges:执行跟踪语句的用户是否有查看对象的权限。当不具有权限时,该列信息为1且trace字段为空,一般在调用带有sql security definer的视图或者是存储过程的情况下,会出现此问题。

四、结果分析

最核心的是trace字段的内容。我们逐段分析:

4.1 join_preparation

join_preparation段落展示了准备阶段的执行过程。

{
  "join_preparation": {
    "select#": 1,
    "steps": [
      {
        -- 对比下原始语句,可以知道,这一步做了个格式化。
        "expanded_query": "/* select#1 */ select `salaries`.`emp_no` AS `emp_no`,`salaries`.`salary` AS `salary`,`salaries`.`from_date` AS `from_date`,`salaries`.`to_date` AS `to_date` from `salaries` where ((`salaries`.`from_date` = '1986-06-26') and (`salaries`.`to_date` = '1987-06-26'))"
      }
    ]
    /* steps */
  }
  /* join_preparation */
}

4.2 join_optimization

join_optimization展示了优化阶段的执行过程,是分析optimizer trace的重点。这段内容超级长,而且分了好多步骤,不妨按照步骤逐段分析:

4.2.1 condition_processing

该段用来做条件处理,主要对where条件进行优化处理。

"condition_processing": {
  "condition": "WHERE",
  "original_condition": "((`salaries`.`from_date` = '1986-06-26') and (`salaries`.`to_date` = '1987-06-26'))",
  "steps": [
    {
      "transformation": "equality_propagation",
      "resulting_condition": "(multiple equal('1986-06-26', `salaries`.`from_date`) and multiple equal('1987-06-26', `salaries`.`to_date`))"
    },
    {
      "transformation": "constant_propagation",
      "resulting_condition": "(multiple equal('1986-06-26', `salaries`.`from_date`) and multiple equal('1987-06-26', `salaries`.`to_date`))"
    },
    {
      "transformation": "trivial_condition_removal",
      "resulting_condition": "(multiple equal(DATE'1986-06-26', `salaries`.`from_date`) and multiple equal(DATE'1987-06-26', `salaries`.`to_date`))"
    }
  ] /* steps */
} /* condition_processing */

其中:

  • condition:优化对象类型。where条件句或者是having条件句
  • original_condition:优化前的原始语句
  • steps:主要包括三步,分别是quality_propagation(等值条件句转换),constant_propagation(常量条件句转换),trivial_condition_removal(无效条件移除的转换)
    • transformation:转换类型句
    • resulting_condition:转换之后的结果输出

4.2.2 substitute_generated_columns

substitute_generated_columns用于替换虚拟生成列

"substitute_generated_columns": {
} /* substitute_generated_columns */

4.2.3 table_dependencies

分析表之间的依赖关系

{
  "table_dependencies": [
    {
      "table": "`salaries`",
      "row_may_be_null": false,
      "map_bit": 0,
      "depends_on_map_bits": [
      ] /* depends_on_map_bits */
    }
  ] /* table_dependencies */
}

其中:

  • table:涉及的表名,如果有别名,也会展示出来
  • row_may_be_null:行是否可能为null,这里是指join操作之后,这张表里的数据是不是可能为null。如果语句中使用了left join,则后一张表的row_may_be_null会显示为true
  • map_bit:表的映射编号,从0开始递增
  • depends_on_map_bits:依赖的映射表。主要是当使用straight_join强行控制连接顺序或者left join/right join有顺序差别时,会在depends_on_map_bits中展示前置表的map_bit值。

4.2.4 ref_optimizer_key_uses

列出所有可用的ref类型的索引。如果使用了组合索引的多个部分(例如本例,用到了index(from_date, to_date) 的多列索引),则会在ref_optimizer_key_uses下列出多个元素,每个元素中会列出ref使用的索引及对应值。

{
  "ref_optimizer_key_uses": [
    {
      "table": "`salaries`",
      "field": "from_date",
      "equals": "DATE'1986-06-26'",
      "null_rejecting": false
    },
    {
      "table": "`salaries`",
      "field": "to_date",
      "equals": "DATE'1987-06-26'",
      "null_rejecting": false
    }
  ] /* ref_optimizer_key_uses */
}

4.2.5 rows_estimation

顾名思义,用于估算需要扫描的记录数。

{
  "rows_estimation": [
    {
      "table": "`salaries`",
      "range_analysis": {
        "table_scan": {
          "rows": 2838216,
          "cost": 286799
        } /* table_scan */,
        "potential_range_indexes": [
          {
            "index": "PRIMARY",
            "usable": false,
            "cause": "not_applicable"
          },
          {
            "index": "salaries_from_date_to_date_index",
            "usable": true,
            "key_parts": [
              "from_date",
              "to_date",
              "emp_no"
            ] /* key_parts */
          }
        ] /* potential_range_indexes */,
        "setup_range_conditions": [
        ] /* setup_range_conditions */,
        "group_index_range": {
          "chosen": false,
          "cause": "not_group_by_or_distinct"
        } /* group_index_range */,
        "skip_scan_range": {
          "potential_skip_scan_indexes": [
            {
              "index": "salaries_from_date_to_date_index",
              "usable": false,
              "cause": "query_references_nonkey_column"
            }
          ] /* potential_skip_scan_indexes */
        } /* skip_scan_range */,
        "analyzing_range_alternatives": {
          "range_scan_alternatives": [
            {
              "index": "salaries_from_date_to_date_index",
              "ranges": [
                "0xda840f 

其中:

  • table:表名
  • range_analysis:
    • table_scan:如果全表扫描的话,需要扫描多少行(row,2838216),以及需要的代价(cost,286799)
    • potential_range_indexes:列出表中所有的索引并分析其是否可用。如果不可用的话,会列出不可用的原因是什么;如果可用会列出索引中可用的字段;
    • setup_range_conditions:如果有可下推的条件,则带条件考虑范围查询
    • group_index_range:当使用了group by或distinct时,是否有合适的索引可用。当未使用group by或distinct时,会显示chosen=false, cause=not_group_by_or_distinct;如使用了group by或distinct,但是多表查询时,会显示chosen=false,cause =not_single_table。其他情况下会尝试分析可用的索引(potential_group_range_indexes)并计算对应的扫描行数及其所需代价
    • skip_scan_range:是否使用了skip scan
    • analyzing_range_alternatives:分析各个索引的使用成本
      • range_scan_alternatives:range扫描分析
        • index:索引名
        • ranges:range扫描的条件范围
        • index_dives_for_eq_ranges:是否使用了index dive,该值会被参数eq_range_index_dive_limit变量值影响。
        • rowid_ordered:该range扫描的结果集是否根据pk值进行排序
        • using_mrr:是否使用了mrr
        • index_only:表示是否使用了覆盖索引
        • rows:扫描的行数
        • cost:索引的使用成本
        • chosen:表示是否使用了该索引
      • analyzing_roworder_intersect:分析是否使用了索引合并(index merge),如果未使用,会在cause中展示原因;如果使用了索引合并,会在该部分展示索引合并的代价。
    • chosen_range_access_summary:在前一个步骤中分析了各类索引使用的方法及代价,得出了一定的中间结果之后,在summary阶段汇总前一阶段的中间结果确认最后的方案
      • range_access_plan:range扫描最终选择的执行计划。
        • type:展示执行计划的type,如果使用了索引合并,则会显示index_roworder_intersect
        • index:索引名
        • rows:扫描的行数
        • ranges:range扫描的条件范围
      • rows_for_plan:该执行计划的扫描行数
      • cost_for_plan:该执行计划的执行代价
      • chosen:是否选择该执行计划

4.2.6 considered_execution_plans(重要)

负责对比各可行计划的开销,并选择相对最优的执行计划。

{
  "considered_execution_plans": [
    {
      "plan_prefix": [
      ] /* plan_prefix */,
      "table": "`salaries`",
      "best_access_path": {
        "considered_access_paths": [
          {
            "access_type": "ref",
            "index": "salaries_from_date_to_date_index",
            "rows": 86,
            "cost": 50.412,
            "chosen": true
          },
          {
            "access_type": "range",
            "range_details": {
              "used_index": "salaries_from_date_to_date_index"
            } /* range_details */,
            "chosen": false,
            "cause": "heuristic_index_cheaper"
          }
        ] /* considered_access_paths */
      } /* best_access_path */,
      "condition_filtering_pct": 100,
      "rows_for_plan": 86,
      "cost_for_plan": 50.412,
      "chosen": true
    }
  ] /* considered_execution_plans */
}

其中:

  • plan_prefix:当前计划的前置执行计划。
  • table:涉及的表名,如果有别名,也会展示出来
  • best_access_path:通过对比considered_access_paths,选择一个最优的访问路径
    • considered_access_paths:当前考虑的访问路径
      • access_type:使用索引的方式,可参考explain中的type字段
      • index:索引
      • rows:行数
      • cost:开销
  • chosen:是否选用这种执行路径
  • condition_filtering_pct:类似于explain的filtered列,是一个估算值
  • rows_for_plan:执行计划最终的扫描行数,由considered_access_paths.rows X condition_filtering_pct计算获得。
  • cost_for_plan:执行计划的代价,由considered_access_paths.cost相加获得
  • chosen:是否选择了该执行计划

4.2.7 attaching_conditions_to_tables

基于considered_execution_plans中选择的执行计划,改造原有where条件,并针对表增加适当的附加条件,以便于单表数据的筛选。

TIPS

这部分条件的增加主要是为了便于ICP(索引条件下推),但ICP是否开启并不影响这部分内容的构造。
ICP参考文档:https://www.cnblogs.com/Terry-Wu/p/9273177.html

{
  "attaching_conditions_to_tables": {
    "original_condition": "((`salaries`.`to_date` = DATE'1987-06-26') and (`salaries`.`from_date` = DATE'1986-06-26'))",
    "attached_conditions_computation": [
    ] /* attached_conditions_computation */,
    "attached_conditions_summary": [
      {
        "table": "`salaries`",
        "attached": "((`salaries`.`to_date` = DATE'1987-06-26') and (`salaries`.`from_date` = DATE'1986-06-26'))"
      }
    ] /* attached_conditions_summary */
  } /* attaching_conditions_to_tables */
}

其中:

  • original_condition:原始的条件语句
  • attached_conditions_computation:使用启发式算法计算已使用的索引,如果已使用的索引的访问类型是ref,则计算用range能否使用组合索引中更多的列,如果可以,则用range的方式替换ref。
  • attached_conditions_summary:附加之后的情况汇总
    • table:表名
    • attached:附加的条件或原语句中能直接下推给单表筛选的条件。

4.2.8 finalizing_table_conditions

最终的、经过优化后的表条件。

{
  "finalizing_table_conditions": [
    {
      "table": "`salaries`",
      "original_table_condition": "((`salaries`.`to_date` = DATE'1987-06-26') and (`salaries`.`from_date` = DATE'1986-06-26'))",
      "final_table_condition   ": null
    }
  ] /* finalizing_table_conditions */
}

4.2.9 refine_plan

改善执行计划:

{
    "refine_plan": [
    {
        "table": "`salaries`"
    }
    ] /* refine_plan */
}

其中:

  • table:表名及别名

4.3 join_execution

join_execution段落展示了执行阶段的执行过程。

"join_execution": {
  "select#": 1,
  "steps": [
  ] /* steps */
}

五、总结

在整个optimizer_trace中我们重点其实就是在跟踪记录tracejson树,我们通过这棵树中的内容可以具体去分析优化器究竟做了什么事情,进行了哪些选择,是基于什么原因做的选择,选择的结果及依据。这一系列都可以辅助验证我们的一些观点及优化,更好的帮助我们对我们的数据库的实例进行调整。

登录查看全部

参与评论

评论留言

还没有评论留言,赶紧来抢楼吧~~

手机查看

返回顶部

给这篇文章打个标签吧~

棒极了 糟糕透顶 好文章 PHP JAVA JS 小程序 Python SEO MySql 确认